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1. Introduction

Although torsion balance measurements are obsolete in gravity

prospecting, the 06tvbs torsion balance remains a useful conceptual device in

uL2eu).etical geodesy. Indeed it may be employed to measure the curvature

differences and gravity gradients which are essentially the components of the

Marussi tensor of geopotential gravity gradients.

Following Hotine (1969) let N denote the geopotential function for the

Earth which is assumed to be rotating with a constant angular velocity W.

Points having a common value of N, say a constant C, are said to lie on a

gecpotential N-surface, N(x , x2 , x 3 ) = C, where x are rectilinear

Cartesian coordinates in Euclidean 3-space. The gradient of N, denoted by

N r satisfies the kisiu Ir m 'en t r,('i n t,

N = nt, (1.1)r r

where n is the magnitude of the acceleration due to gravity, and tr is an
rupward pointing unit normal to the N-surface. Thus, although N r  i s the

gravity vector of the Earth, by Hotine's convention in order to give it a

downward pointing direction it is necessary to take n = -g. We will simply

retain n in our discussion. The gravity gradients are then given by the

components of the Moisi tris ,r, i.e.

N : = N = n si + n, (1.2)rS r,s s r r,s

where the comma denotes covariant differentiation with respect to the flat

space metric of Euclidean 3-space. The external geopotential field N of the

Earth then satisfies the field equation

AN := -2 2  (1.3)

where A is the flat 3-dimensional Laplacian operator, and this together with

Lhe Bruns equation

(log n) r = , -
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reduces the number of independent components of the (symmetric) Marussi tensor

from six to five. Thus, as Marussi (1949) showed, the metrical properties of

the Earth's geopotential field are completely described by five functions

which Hotine (1969) denoted by 1?i I121 tit 11  '1 2 and called the curtature

orxnmetcrs. An explicit identification of these curvature parameters will be

given in Section 3.

An immediate question arises as to how in practice these curvature

parameters can be measured. Both Marussi and Hotine suggested that this could

be done by employing the Eitvbs torsion balance and the latter worked out the

corresponding theory in Hotine (1957, pages 9-10) and Hotine (1969, pages

150-151). In the latter reference he commented that

"Measurement in several azimuths will accoLdingly determine 1? - k 21

tl 1' 2 and some instrument constants, but will not separate I1  and

I? To do this, we need an additional form of measurement."

Hotine then discussed possibilities for more refined measurements and

gave several references. The general theory was analyzed exhaustively in

Mueller (1960), and Mueller (1963). The general conclusion is that the

inability to distinguish, i.e. measure, 1l and 1, separately is a philsical

limitntion imposed by the use of the Wctvois torsion balance.

In the present paper we will show by employing some tensorial methods

recently developed by the author in Zund (1988a, 1988b) that the atvc',gc

curvatitre difference 1 ±(12 - 1Za1)/2 occur in expressions for the fourth and

fifth fundamental tensors. This suggests that the above limitation may have a

geometric origin since these tensors naturally arise in the differential

geometry of the N-surfaces. In Section 2 we briefly review the relevant

material from our papers which is required in this study. These results are

reformulated in the 2-leg representation in Section 3, and finally in an
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Appendix we exhibit an explicit 2-leg representation when the N-surfaces are

spheroids.

In our discussion, unless specified to the contrary, our notation and

terminology follows that employed in Hotine (1969), although this is slightly

different from the purely mathematical presentation in Zund (1988a, 1988b).

Special note should also be made of the elegant expose of the differential

geometry of the gravity field recently given by E.W. Grafarend (1986) in this

journal.

2. The Fourth and Fifth Fundamental Tensors and Invariant Curvatures.

It is well known that the intrinsic and extrinsic differential geometry

of surfaces which are isometrically imbedded in Euclidean 3-space can be

described by thr-ee fundamental tensnrs: a (o, b a, car; and two invariant

curvatures: the CGauss (total ) curiwature K and the Ger-main (mean) curuature

H. However, one can also introduce a fourth and fifth fundamental tensor and

two additional invariant curvatures. These quantities are implicit in the

work of the Soviet school of tensor analysis created by V.F. Kagan

(1869-1953). Unfortunately, much of this work is little known or available in

the West, but recently in Zund (1988a, 1988b) we have presented a unified

exposition and generalization of some of this work. We now review those

results which are useful in the differential geodesy of the Ebtv6s torsion

balance.

We begin with the Uuic, tensor

h = Pa b (2.1)

which occurs in the equation

h -N = 0 (2.2)
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which defines the principal directions " on a surface, see McConnell (1931,

page 212). The Euler tensor (2.1) has no privileged symmetry, although only

its symmetric pazt contributes to defining the principal directions. If this

tensor is decomposed into its symmetric and skew-symmetric parts, then we

obtain

h cy d OP+HWL

where d OP = d C) is the foirth fundomentul ter, 1 . It was employed by S.G.

Gasparyan (1961) in a beautiful memoir on the bending of surfaces which leaves

the Gaussian curvature invariant, however, we believe it was known many years

earlier by geometers of the Moscow school. Hence, it is probably appropriate

to call it the Kagan tensor. One can also formally introduce a fifth

fundamental tensor f O which can be expressed in the form

f 0 = Ha 3 - b * (2.4)

Note that f is obviously symmetric, and, by virtue of its interpretation in

differential geodesy given in Section 3 we call it the Ebtlds tensor. The

detailed geometric and algebraic properties of these tensors are given in Zund

(1988a, 1988b).

The two additional invariant curvatures are defined by

E:= H2 - K , (2.5)

F: = 2H2 - K , (2.6)

and are called the Eleirr and Monge cniot,,-rs respectively. Up to a numerical

2actor of one half, F is the Casorati curvature of Marussi (1951; 1985 page

19). Each of the invariant curvatures can be expressed tensorially, i.e.

2H =&0  Pa a a'b , (2.7)
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2K = (- i u bU pcb , (2.8)

2F = a d 00 , (2.9)

2F = a" fab pa (2.10)

An equivalent expression for (2.7) is 2H = aOnb ap which shows that the

&itvos tensor is traceless.

3. Hotine's 2-Leg Representation.

Following Grafarend (1986) we call a pair of orthogonal unit surface

vectors a 2-leg. In accord with the notation of Chapters 6 and 7 of Hotine

(1969), we denote the contravariant components of the 2-leg by {Pa, j() with

P =r X i' . x , j"' being the corresponding space vectors. In the latter

expressions, x r = er/)x where the x r are rectangular Cartesian
a

coordinates in Euclidean 3-space, and xa  denote curvilinear coordinates,

i.e. parameters, on the N-surfaces. This 2-leg may be extended to a 3-leg of

r r r r
space vectors {P , j , i,} by including the unit normal 1r to the

N-surfaces. Then the 2-legs {,r, r r z r define planes which are said

to be sect ions of the N-surfaces.

As a consequence of the orthogonality conditions of the 2-leg, the Levi-

Civita permutation tensor has the 2-leg representation

F-[3 = P (aj - jaP * (3.1)

The fundamental surface tensors are then readily found to have the

representations:

aCI a P [I + )J1  ' (3.2)

b f' = b PP 13 + t I(P j + j (I) + h2jaj , (3.3)

cr1 1ir 3 a 13 17 1) 2 5



2 ,2c [ ?=2, ' -: + ) i 'j/ l 3 4
i i + 1 + 2 /31 2 ] ,1

where 1I , 11 2  are the ;ui mol ( urt-,m , and 1' t = 1 are the gco(uIhFic

tor ;i n of the N-surface in the directrons i" v.ie remaining two

curvature parameters 1' 2 are relate] to the curvature of the normal r

in the directions pt jr and do not depend on the fundamental tensors.

The corresponding expressions for the invariant rcurvatures of the

N-surfaces are given by

H - (b + 1,,),'2 , (3.5)

2
K = l, 2 1 1 i 2 1(3.6)

E = (" 1 - "22,  2 +12

2 2 2F = + 2) + t(

The 2-leg representations for the Kagan and Eitvbs ten.;ors are then found to

be

I, 2 " 1
d = P a[ + 2 (e if' + j-jPO) + lj jj 0 3.9)

f3= 2 )(P - jf - t I(Pof + j ) (3.10)

and hence the Euler tensor has the representation

hG = ,l(P= rP + j j[3) + 1 2 11j - 1,l]( ,'/'i (3.11)

Note that these representations show that in general neither d nor h i

a: ', traceless, viz both have the trace 2t 1, while as mentioned previously

f ap is always traceless.

Equations (3.9), (3.10) indicate the first evidence of the relationship

between the curvature differences and the Kagan and Ebtvos tensors. This
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appear ince is of course due to our choice of the 2-leg, but aside from the

orthogonality requirement the 2-leg {P, jl} is quite general. Indeed, if

this requirement were relaxed, and the unit vectors Pa j" were inclined to
each other at an angle 0 < t) < T, then a CYO = cos 0, ( 3 = sin 0, and

our previous expressions would contain additional trigonometric functions but

no neA' curvature parameters would occur. Thus the relationship between the

curvature differencs and these tensors is not essentially a consequence of a

specialication of the 2-leg.

However, by a further natural specialization of the 2-leg, this

representation can be put in a more transparent and striking form. This

additional specialization in' Ilves choosing a 2-leg in which the normal

curvatures 2 assume their maximum and minimum values. Such a 2-leg is

called a pi ,r,(if&i, 2-leg, the corresponding vectors are p'incipol (Hect'oris,

and the sections of the N-surfaces In inci1xiI scu tio . Following Hotine

(1969, paoe 42) these vectors are denoted by u0 , v and relative to this

2-leg, ).l' }'2 reduce to the riri < ,i (m,, t11 1CHr Kif K 2 f and t1 = 0.

Algebraically this specialization makes U0 v Q c n'ec t )rs of the

fundamental tensors a y , b1 f, cl, d [1 , and f . The principul 2-lea

representations of these tensors are thus:

a =u + V v (3.12)

h w = j.U Iu/U + K-2v V[ V (3.13

2 2C [i = KlU ,U,, + K'2vavP ,( 1

d! ( 2 )(uv * v+u) , (3.15)

i 2- 1 ] 1 32

f 2 1- U +2 )v v , (3.16)
2
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and this representation explicitly exhibits the eigcnvol,i s of these tensors

in terms of the principal curvatures. OF course, this of ;.,c, tor--ernole

lpopc"t-, does not hold "or either the Levi-Civita tensor

C I U ?'/, VOU1 (3.17)

or the Euler tensor

h (,?= '2U V f K IVu IU. (3.18)

Higher order powers of the principal curvatures may occur, for exam'ale in

3 3
2Hc - Kb = u u + K2vvap af3 'f lo1b3 01

but the analysis given in Zund (1988b) suggests that such combinations of the

fundamental tensors have no particular geometric significance.

Although the Kagan tensor (3.15) involves a curvature difference, the

Eotvos tensor (3.16) is mo-e interesting since in terms of its principal 2-leg

representation it exhibits both curvature differences. Indeed, this is why we

refer to this tensor as the 06tvos tensor. It should be noted that with

characteristic modesty Marussi (1931, 1985) always referred to Nrs, i.e. our

(1.2), as the Ebtv6s tensor, but most mathematical geodesists have followed

Hotine's custom of calling the latter the Marussi tensor. Note that since

K 1 =K 2 for a sphere, the Kagan and kitvs tensors in differential geodesy

essentially measure the deviation of the spheroidal N-surfaces from perfect

spherical form. The appearance of the curvature differences in these tensors

is surprising since both tensors have a purely geometric origin. It also

£ggests that Hotine's observation quoted in Section 1 is not merely a

physical limitation imposed by employing torsion balance measurements, but a

geometric limitation arising from the geometry of the N-surfaces. An

additional reason for this can be found in Hotine (1969, p. 44) where it is

8



shown that the principal 2-leg representation of the Codazzi-Mainardi

equations leads to the equations

(K - K 2 )(1 = ,1 v(

* a
(KI - K 2 )O - K 2 u

where a, a are the geodesic curvotnres of the principal directions u , v

respectively.

An excellent classical discussion, without using tensors, is given in

Slotnick (1932), and it is reviewed with reference to geophysical prospecting

in Dobrin (1960, pp. 180-183).

We believe that the above discussion indicates not only a connection

between the torsion balance and differential geometry, but also the advantages

of the 2-leg approach to differential geodesy. This approach was implicit in

the work of Marussi and Hotine, however, their exposition of it failed to

emphasize that it is a coor-di ote-free method and that it is conceptually

distinct from the classical coordinate approach to tensors. In the 2-leg

approach, as we will illustrate in the following Appendix, the r6le of

coordinates is a secondary one and the resulting coordinates have a natural

interpretation. In effect one makes a physical, or geometrical, choice of a

2-leg, which involves measurable quantities and then introduces a coordinate

system based on the 2-leg. This is of course classically the notion of

phijsico I cmpnrnts of vectors/tensors as contained in the appendix of

McConnell (1931), however, only the modern approach to tensors makes this

procedure natural. Both Marussi and Hotine realized the advantages of the

2-leg formalism, but were unable to separate it from their primary goal of

finding i,,ti ir c coordinate systems.

9



4. Appendix. Explicit Calculations on the Spheroid.

We now exhibiK Llie components of the fundamental tensor, the Euler

tensor, and the principal 2-legs when the N-surfaces are spheroids, i.e.,
3

ellipsoids of revolution about the x -axis having semi-axes a > b. Following

Hotine (1969), we take the curvilinear surface coordinates (parameters) to be

x = (ul, 0) where w is the longitude and 0 the latitude 0 < w < 2Tr,

-7r/2 K 0 ' Tr/2. Then the first fundamental form becomes

2 2 2 2 2 2
ds = p1 cos 0 + f)2c (A.1)

where PI: , 1Al, P2 : = l/K 2, are the principal radi i of ciruttltr-c where

Kl -- (1 - e 2 sin20) 1 1 2 /a , (A.2)

K2 = -(Ii - sin2 0) 3/2/a(l - e 2 ) , (A.3)

and e is the ecccritricitt;

2 2_ 2 2

e: (a b)/a (A.4)

In the remainder of our discussion it will be convenient to employ K I'

2' or P1 ' P2  in place of the above explicit values. Then the components of

the first fundamental tensor are given by

2 2

Ila crfll = 0 2 (A.5)

and by (3.12) the components of the principal 2-leg are

u cI =PCos 0 , u2 = 0 ; (A.6)

= 0 -2 =P 2 ; (A.7)

and
1 2

U = -K sec , u= 0 ; (A.8)

10
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V 0 , v2 = 2  (A.9)

The components of the remaining fundamental tensors are then

lb 1 1 2 (A.10)0 , 0
' 2

K 2p1coso ,O
lic 0 1 2 2 (A.11)

2l

0 ,(---- )plP2cos 0

lid l 1 2 )plp 2 cOs0 , 0

(A.12)

2 1 2 2
( F1,cos 0 , 0

lif =731 0 , -( T )2cos 2

If 1= 12 2 2
(A.13)

and the Euler tensor has components

0 1Cos0

llh I -f 2 Cos 0 0 (A.14)
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